Kamis, 27 November 2014

KONSEP NILAI WAKTU DARI UANG DAN EKIVALENSI


1.    Nilai Uang Terhadap Waktu
Pengaruh waktu terhadap nilai uang (the time value of  money) di masa yang akan datang menyangkut penanaman dana ke dalam suatu investasi baik investasi jangka pendek maupun jangka panjang. Berdasarkan pengaruh waktu nilai uang akan berubah di waktu yang akan datang kalau jumlahnya sama, hal ini disebabkan karena perkembangan perekonomian di mana masyarakat semakin tahu arti perkembangan perekonomian dan bagaimana dampaknya terhadap harga-harga secara umum. Oleh karena itu pengertian dari nilai uang terhadap waktu adalah suatu konsep yang menyatakan bahwa nilai uang sekarang akan lebih berharga dari pada nilai uang masa yang akan datang atau suatu konsep yang mengacu pada perbedaan nilai uang yang disebabkan karena perbedaaan waktu.
Berbicara masalah nilai waktu uang ini, Anwar Iqbal Qureshi (1991) yang dikutip Syafii Antonio (2001: 74) menjelaskan mengenai fenomena bunga dengan rumusan yang dikenal “menurunnya nilai barang di waktu mendatang dibanding dengan nilai barang di waktu kini.” Singkatnya kalangan ini menganggap bahwa: “sebagai agio atau selisih nilai yang diperoleh dari barang-barang pada waktu sekarang terhadap perubahan atau penukaran barang di waktu yang akan datang.”
Boehm Bawerk dalam Syafii Antonio (2001: 74) sebagai pendukung pendapat tersebut mengemukakan tiga alasan mengapa nilai barang di waktu yang mendatang akan berkurang, yaitu sebagai berikut:
  1. Keuntungan di masa yang akan datang diragukan. Hal tersebut disebabkan oleh ketidakpastian peristiwa serta kehidupan manusia yang akan datang, sedangkan keuntungan masa kini sangat jelas dan pasti.
  2. Kepuasan terhadap kehendak atau keinginan masa kini lebih bernilai bagi manusia daripada kepuasan mereka pada waktu yang akan datang. Pada masa yang akan datang, mungkin saja seseorang tidak mempunyai kehendak semacam sekarang.
  3. Kenyataannya, barang-barang pada waktu kini lebih penting dan berguna. Dengan demikian, barang-barang tersebut mempunyai nilai yang lebih tinggi dibanding dengan barang-barang pada waktu yang akan datang.
Dalam memperhitungkan, baik nilai sekarang maupun nilai yang akan datang maka kita harus mengikutkan panjangnya waktu dan tingkat pengembalian maka konsep nilai uang terhadap waktu sangat penting dalam masalah keuangan baik untuk perusahaan, lembaga maupun individu. Dalam perhitungan uang, nilai Rp1.500,- yang diterima saat ini akan lebih  bernilai atau lebih tinggi dibandingkan dengan Rp1.000,- yang akan diterima dimasa akan datang.
Hal tersebut  sangat mendasar karena nilai uang akan berubah menurut waktu yang disebabkan banyak factor yang mempengaruhinya seperti. Adanya inflasi, perubahan suku bunga, kebijakan pemerintah dalam hal pajak, suasana politik, dan lain lain.
1.    Pengertian Ekivalensi
Nilai uang yang berbeda pada waktu yang berbeda akan tetapi secara finansial mempunyai nilai yang sama. Kesamaan nilai finansial tersebut dapat ditunjukkan jika nilai uang dikonversikan (dihitung) pada satu waktu yang sama.

2.    Metode Ekivalensi
Adalah metode yang digunakan dalam menghitung kesamaan atau kesetaraan nilai uang waktu berbeda.
Nilai ekivalensi dari suatu nilai uang dapat dihitung jika diketahui 3 hal :
1)      Jumlah uang pada suatu waktu
2)      Periode waktu yang ditinjau
3)      Tingkat bunga yang dikenakan

3.    Perhitungan Ekivalensi

Nilai Ekivalensi Pengeluaran = Nilai Ekivalensi Penerimaan
Contoh:
            Hari ini budi menabung di bank sebesar Rp 10.000. dua dan empat tahun kemudian ditabungnya lagi masing-masing sejumlah Rp 5.000. maka jumlah uang tabungannya pada tahun ke 7 dar hari ini bila suku bunga i =10 % adalah sebesar Rp 34.195

Rumus-Rumus Bunga Majemuk dan Ekivalensinya
Notasi yang digunakan dalam rumus bunga yaitu :
i (interest)                    = tingkat suku bunga per periode                  
n (Number)                 = jumlah periode bunga
P (Present Worth)       = jumlah uang/modal pada saat sekarang (awal periode/tahun)
F (Future Worth)         = jumlah uang/modal pada masa mendatang (akhir periode/tahun)
A (Annual Worth)       = pembayaran/penerimaan yang tetap pada tiap periode/tahun
G (Gradient)               = pembayaran/penerimaan dimana dari satu periode ke periode berikutnya
                                       terjadi penambahan atau pengurangan yang besarnya sama

Single Payment
            Single payment disebut cash flow tunggal dimana sejumlah uang ini sebesar “P” (present) dijinjamkankan kepada seseorang dengan suku bunga sebesar “i” (interest) pada suatu periode “n”, maka jumlah yang harus dibayar sesuai uang pada periode “n” sebesar “F” (future). Nilai “F” akan di ekivalensi dengan “P” saat ini pada suku bunga “i”. Dengan rumus:

Jika dibalik, misalnya F diketahui dan P yang dicari maka hubungan persamaannya menjadi:
Annual Cash Flow (Uniform Series Payment)
            Metode annual cash flow diaplikasikan untuk suatu pembayaran yang sama besarnya tiap periode untuk jangka waktu yang lama, seperti mencicil rumah, mobil, motor dan lainya. Grafik annual cash flow di gambarkan dalam bentuk grafik dibawah ini:

Hubungan annual dan future
            Dengan menguraikan bentuk annual dengan tunggal (single)dan selanjutnya masing-masingnya itu diasumsikan sebagai suatu yang terpisah dan dijumlahkan dengan menggunakan persamaan sebelumnya. Maka akan diperoleh rumus:

Hubungan future dengan annual

Hubungan annual dengan present (P)
Jika sejumlah uang present didistribusikan secara merata setiap periode akan diperoleh besaran ekuilaven sebesar “A”, yaitu:




Hubungan present (P) dengan annual (A)

Pembayaran Tunggal
            Pembayaran dan penerimaan uang masing-masing dibayarkan sekaligus pada awal atau akhir suatu periode.
1)      Present Worth Analysis
Nilai sejumlah uang pada saat sekarang yang merupakan ekivalensi dari sejumlah Cash Flow (aliran kas) tertentu pada periode tertentu dengan tingkat suku bunga (i) tertentu.

Kegunaan
Untuk mengetahui analisis sejumlah uang pada waktu sekarang


Berapa modal P yang harus diinvestasikan pada saat sekarang (t=0), dengan tingkat suku bunga (i) %, per tahun, sehingga pada akhir n periode didapat uang sebesar F rupiah.
Rumus:
                        P = F 1/(1+i)N     atau   P = F (P/F, i, n)


Contoh:
Seseorang memperhitungkan bahwa 15 tahun yang akan datang anaknya yang sulung akan masuk perguruan tinggi, untuk itu diperkirakan membutuhkan biaya sebesar Rp 35.000.000,00. Bila tingkat bunga adalah 5 %, maka berapa ia harus menabungkan uangnya sekarang?
Jawab:
F = 35.000.000,00 ; i = 5 % ; n = 15
P = (35.000.000) (P/F, 5, 15)
   = (35.000.000) (0,4810)
   = Rp 16.835.000,00

            
2)      Future Worth Analysis
Nilai sejumlah uang pada masa yang akan datang, yang merupakan konversi dari sejumlah aliran kas dengan tingkat suku bunga tertentu.

Kegunaan
Untuk mengetahui analisis sejumlah uang pada waktu yang akan datang


            Bila modal sebesar P rupiah diinvestasikan sekarang (t = 0), dengan tingkat bunga i %, dibayar per periode selama n periode, berapa jumlah uang yang akan diperoleh pada periode terakhir?
Rumus:
                        F = P (1+i)N   atau  F = P (F/P, i, n)

Contoh:
            Seorang pemuda mempunyai uang sebesar Rp 20.000.000, di investasikan dibank 6 % dibayar per periode selama 5 tahun. Berapakah jumlah uang yang akan diperoleh setiap tahunnya ?
Jawab:
P = Rp 20.000.000,00; i = 6 % ; n = 5
F = P (1+i)N
   = Rp 20.000.000 (1 + 0,06)5
Atau
F = P (F/P, i, n)
   = (Rp 20.000.000) X (1,338)
   = Rp 26.760.000,00



3)      Annual Worth Analysis
Sejumlah serial Cash Flow (aliran kas) yang nilainya seragam setiap periodenya. Nilai tahunan diperoleh dengan mengkonversikan seluruh aliran kas kedalam suatu nilai tahunan (anuitas) yang seragam.

Kegunaan
Untuk mengetahui analisis sejumlah uang yang nilainya seragam setiap periodenya (nilai tahunan)

            Agar periode n dapat diperoleh, uang sejumlah F rupiah, maka berapa A yang harus dibayarkan pada akhir setiap periode dengan tingkat bunga i % ?
Rumus:
                        A = i / (1 + i )N – 1  atau  A = F ( A/F, i, n)


Contoh:
            Tuan sastro ingin mengumpulkan uang untuk membeli rumah setelah dia pensiun. Diperkirakan 10 tahun lagi dia pensiun. Jumlah uang yang diperlukan Rp 225.000.000,00. Tingkat bunga 12 % per tahun. Berapa jumlah uang yang harus di tabung setiap tahunnya ?
Jawab:
F = Rp 225.000.000 ; i = 12 % ; n = 10
A = F (A/F, i, n)
    =  (Rp 225.000.000) X (A/F, 12 %, 10)
    = (Rp 225.000.000) X (0,0570)
    = Rp 12.825.000




4)      Gradient
Pembayaran yang terjadi berkali-kali tiap tahun naik dengan kenaikan yang sama atau penurunan yang secara seragam.

Kegunaan
Untuk pembayaran per periode kadang-kadang tidak dilakukan dalam suatu seri pembayaran yang besarnya sama tetapi dilakukakn dengan penambahan /pengurangan yang seragam pada setiap akhir periode.
Rumus:
                        A = A1 + A2
                        A2 = G (1/i - n / (1 + i)n - 1)
                              = G (A/G, i, n)

Keterangan:
A         = pembayaran per periode dalam jumlah yang sama
A1       = pembayaran pada akhir periode pertama
G         = “Gradient” perubahan per periode
N         = jumlah periode

Contoh:
            Seorang pengusaha membayar tagihan dalam jumlah yang sama per periode. Perubahan per periode dengan jumlah uang sebesar Rp 30.000.000  selama 4 tahun. Dengan bunga sebesar 15 % per tahun. Berapa jumlah pembayaran pada akhir tahun pertama?
Jawab:
A2       = G (A/G, i, n)
            = Rp 30.000.000 (A/G, 15 %, 4)
            = Rp 30.000.000 (0,5718)
            = Rp 17.154.000        

5)      Interest Periode
Interval waktu yang dijadikan dasar dalam perhitungan bunga. Biasanya dalam perhitungan bunga digunakan periode satu tahun (annually), ½ tahun (semi annually), atau bulanan (monthly)


Konsep Ekuivalensi
Jumlah uang yang berbeda dibayar pada waktu yang berbeda dapat menghasilkan nilai sama (ekuivalensi) satu sama lain secara ekonomis. 

KESIMPULAN
pengertian dari nilai uang terhadap waktu adalah suatu konsep yang menyatakan bahwa nilai uang sekarang akan lebih berharga dari pada nilai uang masa yang akan datang atau suatu konsep yang mengacu pada perbedaan nilai uang yang disebabkan karena perbedaaan waktu. Sedangkan ekivalnsi adalah nilai uang yang berbeda pada waktu yang berbeda akan tetapi secara finansial mempunyai nilai yang sama. Kesamaan nilai finansial tersebut dapat ditunjukkan jika nilai uang dikonversikan (dihitung) pada satu waktu yang sama.

Sumber :
http://matakuliahekonomi.wordpress.com/2011/04/23/pengertian




            








Tidak ada komentar:

Posting Komentar